Metal ions Release in Saliva from Fixed Orthodontic Appliances: A Systematic Review

Radwa Sallam*
Health Radiation Research Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt

ABSTRACT

Standard Orthodontic intervention involves the use of brackets, bands and arch wires. Brackets used in orthodontic treatment provide the means to transfer force to the teeth using the arch wire. Biodegradation of different typ orthodontic brackets might lead to metal ion release. Nickel (Ni) and chromium (Cr) containing alloys are present in the manufacture of most of the orthodontic appliances. The increase of nickel and/or chromium ions release could result in health hazardous effects. Analysis of the released metal ions was performed through mass spectroscopy, atomic absorption spectroscopy. The aim of this study is to systematically assess the release of metal ions with fixed orthodontic appliances using ceramic brackets. Electronic searches will be performed in two databases (PubMed, Cochrane). The PubMed, identified 29 studies, four of them met the inclusion criteria. In conclusion, although these studies are limited, this systematic review can state that the release of metal ions in patients with fixed orthodontic appliances is in measurable amounts that are considered to be safe. In addition, there are no differences in the release of salivary ions regardless of the bracket type used.

Keywords: Metal ions release / Ceramic brackets / Metallic brackets

Introduction

a. Rationale:

Standard Orthodontic intervention, involves the use of brackets, bands and arch wires. Nickel (Ni) and Chromium (Cr) containing alloys are present in the manufacture of most of the orthodontic appliances. Since different metal alloy combinations are used for prolonged periods in orthodontic patients, special consideration with regard to their biocompatibility should be given (1-5). Manufacturing process together with environmental factors result in corrosion of orthodontic appliances. Consequently, metal ion release occurs. (6) The oral cavity contains many factors which enhance the biodegradation of orthodontic appliances. The change of pH and temperature, the enzymatic and microbial activity, and the various chemicals that come in contact with oral cavity through food and drink are all corrosion conductors. Furthermore, Saliva acts as an electrolyte which further facilitates metal ion conduction (7, 8).

Received 28th Feb 2020
Accepted 6th Apr 2020

Corresponding author: radwasallam36@gmail.com
DOI: 10.21608/ajnsa.2020.24817.1329
© Scientific Information, Documentation and Publishing Office (SIDPO)-EAEA
Analysis of released metal ions was performed through mass spectroscopy, ICP-AES, atomic absorption spectroscopy. The average dietary intake of Nickel and Chromium is 200–300 μg/day and 50–200 μg/day respectively. The increase of Nickel (Ni) and Chromium (Cr) ion release, could result in hazardous conditions. Nickel can be an allergen or carcinogenic and act mutating substance by causing alteration in DNA. On the other hand, high doses of chromium may result in insomnia (10,11)

Over the last several decades, studies have been conducted on metal ion release using different types of brackets with different arch wires. However, studies evaluating the release of metal ions in saliva are controversial. Some studies found an increase in salivary nickel or chromium concentrations (1) .On the other hand, other studies reported no increase in salivary levels of nickel and chromium in patients after installment of orthodontic appliances (10) (12-18).

Ceramic brackets are popular as an esthetic appliance in the field of orthodontics. The use of ceramic brackets with or without metal slot with different types of wires is increasing day by day. (19) Hence, its biocompatibility and metal ion release should be considered. The aim of this review is to evaluate the release of metal ions during fixed orthodontic treatment using ceramic brackets.

b. Objectives:
PICO Question

<table>
<thead>
<tr>
<th>Question</th>
<th>In patients with fixed orthodontic appliances, will ceramic brackets compared to metallic brackets result in metal ion release?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Patients with Fixed orthodontic appliances</td>
</tr>
<tr>
<td>Intervention</td>
<td>Ceramic brackets</td>
</tr>
<tr>
<td>Comparator</td>
<td>Metallic brackets</td>
</tr>
<tr>
<td>Outcome</td>
<td>Release of metal ions</td>
</tr>
</tbody>
</table>

Materials and Methods:
a. Eligibility criteria:

1. Inclusion Criteria:
 - Randomized Controlled Trials, observational studies and in vitro studies.
 - Fixed orthodontic appliances
 - Studies conducted using artificial saliva
 - Studies conducted using oral environmental conditions
 - Release of nickel and chromium ions
 - Amount of ions released measured in μg/l or ppb

2. Exclusion Criteria
 - Studies were done in acidic environment
 - Metal ions release using other units
 - Other biological changes
 - Medically compromised patients
b. Search

<table>
<thead>
<tr>
<th>PICO Item</th>
<th>Date</th>
<th>Pub Med</th>
<th>Cochrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
<td>10/9/2019</td>
<td>10/9/2019</td>
</tr>
<tr>
<td>Patients with fixed orthodontic appliances</td>
<td></td>
<td>2014</td>
<td>534</td>
</tr>
<tr>
<td>Fixed Orthodontic appliances[Text word]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed orthodontic appliances [Mesh Terms]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
<td>1026</td>
<td>41</td>
</tr>
<tr>
<td>Ceramic brackets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic brackets[Mesh Terms]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic brackets[Text word]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td></td>
<td>1407</td>
<td>26</td>
</tr>
<tr>
<td>Metallic brackets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic brackets[Mesh Terms]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic brackets[Text word]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Search</td>
<td></td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Search Strategy

PRISMA 2009 Flow Diagram

Records identified through database searching (n = 22)

Additional records identified through other sources (n = 8)

Records after duplicates removed (n = 29)

Records screened (n = 29)

Records excluded (n = 20)

Full-text articles excluded, with reasons (n = 0)

Full-text articles assessed for eligibility (n = 4)

Studies included in qualitative synthesis (n = 4)
Metal ions Release in Saliva from Fixed Orthodontic Appliances: A Systematic Review

Table 1

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study Type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retamoso et al., 2012</td>
<td>In vitro study</td>
<td>Monocristalline ceramic brackets had good biocompatibility. On the other hand, polycristalline ceramic brackets with metal slots demonstrated some toxic effects due to nickel ion release.</td>
</tr>
<tr>
<td>Khamees et al., 2014</td>
<td>In vitro study</td>
<td>Nickel, and Chromium ions released from combination of monocristalline brackets with different arch wires immersed in artificial saliva at different duration. Both nickel and chromium ions increase with increasing intervals.</td>
</tr>
<tr>
<td>Jithesh et al., 2015</td>
<td>In vitro study</td>
<td>Nickel ion release from the recycled stainless steel brackets is higher compared to metal slot ceramic bracket. Hence, recycled stainless steel brackets should not be used for nickel allergic patients.</td>
</tr>
<tr>
<td>Jurela et al., 2018</td>
<td>In vivo study</td>
<td>The salivary level of nickel ion increased after installment of metallic brackets while, it decreased in ceramic bracket. On the other hand, chromium ions significantly decreased of orthodontic appliances, regardless of bracket type, which was used. There were no significant differences in salivary levels of nickel and chromium between the patients with metallic and those with ceramic brackets.</td>
</tr>
</tbody>
</table>

Results:
The PubMed, Cochrane database and hand search identified 83 studies. No additional search in other database was performed. From 29 identified studies, four met the selection criteria. The description of the studied materials is mentioned in Table (1).

Discussion:
In this systematic review, only four studies met the eligibility criteria. The scarcity of the consistent studies underline the lack of scientific evidence on metal ion release from the ceramic brackets. Low number of included studies in addition to variation in study designs and/or methodologies enabled standardized evaluation. Consequently, comparisons with other studies were limited. Moreover, meta-analysis was impeded. The present review included both in vivo and in vitro studies. In-vivo studies are extremely beneficial in explaining how orthodontic materials react in their actual functioning environment however difficult to standardize owing to many factors that cannot be under experimental control. On the other hand, despite in vitro studies lack the simulation of the oral cavity, in vitro studies are valuable because they are performed under controlled laboratory conditions. The rationale of the current combined in vivo - vitro study, was to evaluate the metal ion release from ceramic brackets from both laboratory and clinical perspectives, identify consistencies and inconsistencies between in vitro and in vivo studies. Moreover, to find out whether evidence from these studies lies on the same direction.

Ceramic brackets are produced from alumina, either as monocristalline or polycristalline. Three in vitro studies evaluated metal ion release from both polycristalline and monocristalline ceramic brackets immersed in artificial saliva.

Retamoso et al., 21 evaluated various orthodontic brackets and reported that monocristalline ceramic brackets had good biocompatibility. However, polycristalline ceramic brackets with metal slots demonstrated some toxic effects due to nickel ion release. Khamees et al., 22 measured nickel and chromium ions release from monocristalline ceramic brackets.
and stainless steel brackets in combination with different arch wires. Regarding, monocrystalline brackets nickel and chromium increase in combination stainless steel, nickel-titanium. The greatest concentration of nickel ions release was during the first week. However, the release of chromium increase with intervals until reach the greatest level in the third week. As for stainless steel brackets, both nickel and chromium ions increased with increase intervals. Jithesh et al. (23) studied nickel ion release from ceramic bracket with metal slot, conventional and recycled stainless steel brackets and reported that Metal slot ceramic bracket release is significantly less in case of nickel ions compared to other groups.

On the other hand, one in vivo study was carried out by Jurela et al., (24) who compared salivary levels of nickel and chromium ions prior to and six months after the installment of metallic or ceramic brackets. They pointed out that there was no difference in baseline salivary concentrations of any of the studied electrolyte between patients with metallic and non-metallic braces. In addition, they found decreased chromium levels and no change in salivary nickel concentration six month after the insertion of orthodontic appliance. To reiterate, the studies selected for the present systematic review indicate low release of metal ions from ceramic brackets in comparison to metallic brackets. In addition quantities of metal released ions were below the toxic levels and did not exceed the daily intake.

The strength point of this review is revealed through considering evidence from both in vitro and in vivo studies. However, a number of limitations is found, especially with regard to the limited studies and the lack of standardization. Further studies with more rigorous methods, such as randomized, controlled clinical trials will be advantageous.

Conclusions

Until now, only a few studies on the evaluation of metal ions release in the oral cavity using ceramic brackets were conducted. This systematic review can support the concept that the release of metal ions in patients with fixed orthodontic appliances is in measurable amounts are considered safe. In addition, there is no difference in the release of salivary ions regardless of the electrolyte between patients with metallic and non-metallic braces.

Recommendation

Analyzing the results of the study, it seems that there is a necessity to standardize procedures, with detailed methodology provided. In addition, more clinical trials with long-term follow up periods are recommended.

References

used in dentistry - A systematic review. *J Drug Invention Today* 10 (4), 536-541

